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T-MAPPP Common issues
• From micro/contact-mechanics to macro-behaviour

• Calibration and Validation

• Choice of calibration tests and relevant parameters -
depending on (flow) regime(s) and application.

• CPU-time when running moderate to large DEM

• Apply modern and novel experimental techniques for 
additional information not available otherwise



Packing: 
micro-structure + history



A. Gupta et al., MSM, 2010

Example:
Mixing



Challenge: DEM with realistic sizes
=> HGrid

… highly polydisperse powdersA. Ogarko et al., MSM, 2010-14



Shallow	flow	continuum	equations (3D->2D)

§ D. Tunuguntla
(PhD-thesis 2015)

- inspired & calibrated 
by experiment & DEM

- boundary conditions

- multi-species
mixing & segregation

- erosion & sedim.
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46 Micro-macro transition
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Figure 3.1: A snapshot of a bidisperse mixture flowing in a periodic box inclined at 26◦ to the horizontal (dis-
crete particle simulation). Colours/shades indicate the base/boundary (yellowish green, F

b ), species type-1
and type-2 (blue, F1 and red, F2). We define the bulk as F1 ∪F2.

require ensemble-averaging, we nevertheless illustrate spatial coarse-graining (averag-
ing in space alone) to be well complemented by temporal averaging (averaging in time).
On the contrary, for unsteady flows, we demonstrate the necessity of defining both the
spatial and temporal coarse-graining scale to construct macroscopic fields.

Outline
To extract the averaged macroscopic fields, the coarse-graining (CG) expressions are sys-
tematically derived in Sec. 3.2. As a test case, Sec. 3.3, we apply the available CG expres-
sions to bidisperse mixtures flowing over an inclined channel, see Fig. 3.1. In Sec. 3.3.2,
for flows in steady state, we show that there exists a range or plateau of smoothing lengths
(coarse-graining scale/width) for which the fields are invariant. Once the averaging scale
is determined, Sec. 3.3.3 showcases how spatial averaging is well complemented by tem-
poral averaging. For bidisperse unsteady flows, not only does Sec. 3.3.4 illustrate the
need of defining both spatial and temporal averaging scales, but it also illustrates that
there exists a range of both spatial and temporal averaging scales for which the fields are
invariant. Finally, Sec. 3.4 summarises and concludes our main findings.

3.2. Spatial coarse-graining
The current section comprehensively extends the approach of [4, 10] to bidisperse spher-
ical systems, and can be easily extended to polydisperse mixtures as well. Traditionally,
the coarse-graining formulae were derived from the classical laws of conservation of
mass, momentum, energy, etc., [9]. Thereby, leading to expressions for the total den-
sity, stress, etc., in terms of the properties of all the particles. Here, we generalise this to
mixtures (multi-components); therefore, our starting point will be mixture theory [44],
which constructs partial mass, momentum and energy balances for each distinct con-
stituent of a mixture.
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78 Segregation model
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Figure 4.2: For a = 3, ρ̂ = 0.5 and ŝ = 1.26, the development of volume fraction φ is shown as a function of the
downslope coordinate x and flow depth z. The domain is initially filled with a mixture of φ1 =φ(x, y,0) = 0.25
and the bulk flow is from left to right. (i) Constant shear rate (γ̇= 1) i.e. simple shear flow α= 0, Ŝr = 1.5, (a)-(b)
Homogeneous mixture inflow (φ0 = 0.6) and (c)-(d) normally graded mixture inflow. (ii) Bagnold-type shear
rate (Eq. 4.20), M = 0.1: (e)-(f) Homogeneous mixture inflow (φ0 = 0.6) and (g)-(h) normally graded mixture
inflow. No. of elements: 160×60.

D. Tunuguntla et al. 2016
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Open source

Based on:
- HGrid
- MicroMacro

Dosing	application	example	…



Open source

Based on:
- HGrid
- MicroMacro

flowable powder

(screw hidden)

Dosing	application	example	…

© Marco Ramaioli, Nestle



Open source

Based on:
- HGrid
- MicroMacro

flowable powder vs.
sticky, chunky powder

(screw hidden)

Dosing	application	example	…O. I. Imole, MSM, 2013



Dosing – parameter calibration

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, 
E. C. Montes, M. Ramaioli, and S. Luding, Powder Tech, 2016. 

Experiments and Discrete Element Simulation of the Dosing of 
Cohesive Powders in a Canister Geometry. In preparation, PhD-thesis, O. I. Imole 2014 

124 Chapter 5 Dosing of cohesive powders in a simplified canister geometry

the interparticle friction is fixed in each case and cohesion is varied. Note that for each
simulation, we obtain data on the cumulative dosed mass and the number of doses. From
each simulation, the respective mass per dose β are obtained within the linear region where
initial conditions and other artefacts due to arching are absent. The mass per dose β is then
systematically compared for different interparticle friction and cohesion and bench-marked
against the obtained experimental β value. We choose β as a calibration parameter since
it is largely independent of the initial mass (see Fig. 5.3a). The For the sake of brevity,
this calibration procedure is performed on using a total mass of 48grams in the box and the
narrow pitch coil with 8 complete turns. We attempted a calibration with higher masses as
compared with the experiments but we observe that due to arching occurring when cohesion
is high, the plot of the cumulative dosed mass becomes non-linear. This made defining an
appropriate β challenging therefore requires further work. In the mean time, we focus the
calibration with the lower mass.
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Figure 5.6: Calibration of the cohesive stiffness Kc = kc/k and inter particle friction µ . Here
we plot the mass per dose β for different Kc and different µ as given in the inset. The dotted
horizontal line shows the experimental β value.

In Fig. 5.6, we show the mass per dose β , plotted against the interparticle cohesive stiffness
Kc and different interparticle friction coefficient µ . The horizontal dotted line shows the
mass per dose obtained in the experiment with value 3.702g/dose. A first observation is the
consistent decrease of β with increasing Kc for all friction. This is due to reduced flowability
of the bulk sample with increasing cohesion. We note however that for the highest friction,
we observe a slight increase in the β values obtained at high cohesion. This is a consequence
of arching that sets in due to high cohesion causing a bridge in the flow especially in the
region above the coil. This leads to highly unsteady mass throughput from the box.

Comparing the data for different friction, we observe a decrease in β with increasing µ .



Dosing meso-rheology: 
DEM vs. experiment <= Validation

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, 
E. C. Montes, M. Ramaioli, and S. Luding, Powder Tech, 2016. 

Experiments and Discrete Element Simulation of the Dosing of 
Cohesive Powders in a Canister Geometry. In preparation, PhD-thesis, O. I. Imole 2014 

5.5 Numerical Results 123
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Figure 5.5: Snapshot of the time evolution of the simulation during the dosing test with
time increasing from (a–d) and (e-h), respectively. (a–d) are taken from simulation while
comparable snapshots (e–h) are image processed experimental visualizations of the powder
profile. Colors/shades in (a–d) indicate the kinetic energy of the particles with blue (static)
and orange (dynamic) particles. For the simulation, parameters are Kc = 0.872 and µ = 0.5.
The coil is not shown for clarity.

at the rear end of the coil and arches forming during ongoing dosage are reproduced in the
simulation. Also, we must point out that the faster emptying at the rear end of the coil is due
to the design of the coil which can be mitigated through the use of conical inserts in the coil
[126]. In the next sections, we will focus on a quantitative comparison between experiments
and simulation.

5.5.2 Calibration and Sensitivity Studies

The particles used in the simulation can be seen as meso-particles consisting of an agglom-
erate of other smaller particles. Due to this, it is important that their material properties are
carefully selected based on sensitivity studies of how each parameter influence the dosing
process in comparison to the experiment.

In order to obtain relevant parameters unique for our problem, we perform various studies in
order to test the sensitivity of the essential material parameters, namely interparticle friction
and cohesion during the dosing process. To achieve this, several simulations were run where



Software used …
• DEMSolutions/EDEM
• DCS/LIGGGHTS
• YADE
• MercuryDPM
• and some others …



Software used …
• DEMSolutions/EDEM
• DCS/LIGGGHTS
• YADE
• MercuryDPM
• and some others

unique features:
- open-source (really)
- parallel (tested >400 processors)
- HGrid for largely different particle sizes
- mercuryCG for coarse-graining to continuum
- analytical complex geometry-support



Software used …

- MercuryCloud no need to buy hardware/pay on demand
- Training
- Expertise
- Support



Realistic	industrial	designs	(bad->good)
Personalised solutions for particulate systems 7

Flexible, accurate & efficient curved walls

MercuryDPM:
5 curved surfaces

Competitors:
1456 triangulated surfaces

Overview Innovations Approach Consultancy

Personalised solutions for particulate systems 20

Step 6: Experimental prototyping

• Our rapid prototyping service! 3D printed designs
• Scaled model prototype in a matter of days
• Used for additional validation and optimisation with the real

material

Overview Innovations Approach Consultancy



Dosing: DEM vs. experiment

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, 
E. C. Montes, M. Ramaioli, and S. Luding. 

Experiments and Discrete Element Simulation of the Dosing of 
Cohesive Powders in a Canister Geometry. In preparation, PhD-thesis, O. I. Imole 2014 



Compaction & Creep: experiment – no DEM (yet)
104 Chapter 4 Slow relaxation behaviour of cohesive powders
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Figure 4.6: Comparison of the vertical (axial) stress plotted against (a) time (b) volumetric
strain for experiments with cocoa powder and Eskal 500 limestone. Experiments carried
out using the Lambdameter with carriage velocity is 0.05mm/s while R1–R5 represent the
intermediate relaxations during loading.

Step σmax
C t0C CC σmax

E t0E CE

R1 4.8964 0.28945 0.0792 5.0027 0.00082 0.0300
R2 9.9684 0.2274 0.0702 10.0246 0.00046 0.0227
R3 14.9130 0.2503 0.0652 15.0648 0.00032 0.0184
R4 20.0375 0.2207 0.0612 20.0004 0.00021 0.0160
R5 25.0718 0.1422 0.0556 25.0253 0.00032 0.0159
error[%] – 0–3 0–0.4 – 3–7 0–1.3

Table 4.5: Fit parameters for the analytical predictions of the relaxation model Eq. (4.3).
The subscripts C and E represent data for cocoa and Eskal, respectively, while R1–R5 are
the relaxation steps.

for each powder in Fig. 4.7a, limestone and cocoa. For each powder, the response time t0
and dimensionless parameter C generally shows a decreasing trend with the maximum stress
at which the relaxation is initiated. The decreasing trend of both parameters t0 and C is
confirmed also for Eskal 500, however, the time-scale is orders of magnitude smaller while
C is of the same order only about a factor of two smaller, as summarized in table 5.3 and
plotted in Fig. 4.7b.

In summary, for both powders, we conclude that even though both Eskal and Cocoa pow-
der show qualitatively similar relaxation at constant strain, their individual magnitudes and
responses are quantitatively dissimilar at different intermediate stress.

*Based on O. I. Imole, M. Paulick, M. Morgeneyer, V. Magnanimo, 
E. C. Montes, M. Ramaioli, A. Kwade, and S. Luding.

An experimental and theoretical investigation of the time-dependent 
relaxation behavior of cohesive powders, PhD-thesis, O. I. Imole, 2014-2016



Particle systems

sometimes FLUID
sometimes SOLID
sometimes BOTH

un-jamming:
fluid <==> solid



Static: yield loci => steady state flow

critical state



Temporal-spatial coarse graining
discrete => continuum

Density	ρ	for	a	2D-Gaussian	coarse-graining	function.
w	=	d/8.

• Define	the	macro-density	using	a	coarse-graining	function:

• Define	velocity	such	that	mass	balance,	∂ρ/∂t	+	∇ ·	(ρV)	=	0,	is	satisfied:

• weight	function:



Temporal-spatial coarse graining
discrete => continuum

• Define stress and wall drag 
such that momentum balance is satisfied 

Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O., From discrete particles to continuum fields near a boundary.
Granular Matter 14(2), 289-294 (2012)



Test case: Silo flow model

Silo flow model with internal flow pattern is used
– Stagnant zone – core flow
– High shear-rate localization zone
– Fast core flow zone

– Experiments: UEdinburgh 4040

30
0

150

Figure 2: Silo geometry (in mm). Dark grey area denotes walls, the light grey area at the
base denotes the outflow. The system is periodic in y-direction.
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Test case: Silo flow model
Silo flow model with internal flow pattern is used

(a) t=0.745s

④ ④ ④

x2 x1 x0

(b) t=1.200s (c) t=1.490s (d) t=2.240s

Figure 4: Silo flow evolution.
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T. Weinhart et al., Powder Tech., 2016



Test case: 
Silo flow model

Horizontal variation:
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Figure 5: Instantaneous solid fraction, momentum and stress profile in the flowing (x0),
shear (x1) and stagnant (x2) zone at height z = 10 cm, averaged over y, with w = d.
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Test case: Silo flow model

Horizontal variation – different fields:
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Figure 11: Profile of solid fraction ν (left), momentum |ρv| (centre), and horizontal shear
rate ∂xvz (right), averaged over y and 1.0 s < t < 1.4 s with w = d. The three points
shown as x1, x2, x3 in the plot as well as the profile at z = 10 cm, are selected for further
analysis.
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shear band – which field?
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Î

-5 0 5
0

5

10

15

20

25

Figure 12: Tensorial shear rate γ̇, horizontal shear rate ∂xvz , and inertial number I =
γ̇d√
p/ρp

scaled onto the interval [0, 1] by its maximum at each height, see (16). Data for

ν < 0.1 (white area on the top) is not considered. Dots denote the maxima of the depicted
values in the left and right half of the domain, black contours denote demarcation of the
shear band where the scaled value is less than a tolerance (tol = 0.6). All values averaged
over y and 1 ≤ t ≤ 1.4 for w = d.
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shear band – which w (CG-width)?
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Figure 13: Horizontal shear rate ∂xvz at
z = 0.1 cm averaged over y and 1.0 s <
t < 1.4 s for varying coarse graining
width w.
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stress components
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Figure 16: Profiles of normal and shear stress components, averaged over y and 1.0 s <
t < 1.4 s with w = d.
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Discrete to continuum
Micro-macro: coarse-graining
• micro-macro CG applied to silo flow example
• Influence of CG parameters analysed 

Macro-variables should be independent of both
temporal and spatial averaging scale.

• Study of shear bands 
• Study of bulk and wall stress

- Anisotropic normal bulk stresses with signs of force chains & arches

• Next? use those results from DEM for your purpose!
• From academic research to industrial application!



Static: yield loci => steady state flow

critical state



• Granular materials are the combination of discrete solid (macroscopic) particles

• many interesting phenomena - can we understand them? all together?

history-dependence, slow relaxation, creep/aging, shear-localization, “avalanches”, 

…

fluid-solid transition => jamming “point” 

Examples: 

Introduction

Nature © Macmillan Publishers Ltd 1998

8
sandpile, the material is fragile in the sense
that a slight change in direction of the
applied stress will change the entire structure
of the force chains that give the pile its rigidi-
ty. Because there is no obvious relation con-
necting stress to strain throughout the pile,
Cates et al. bypass the strain altogether and
propose a relation between different compo-
nents of the stress tensor2,3. This continues to
be a hotly debated assumption4,6–8.

Cates et al. suggest that one way to re-
concile the two approaches is to allow the
particles to deform, so that the material
can respond elastically to sufficiently small
loads. One example of a system that is
jammed and yet not fragile is foam. Shaving
foam, for example, is jammed because the
bubbles are tightly packed together under an
isotropic stress, namely atmospheric pres-
sure. If it were fragile, it would respond plas-
tically to a shear stress, no matter how small.
However, because bubbles deform, foam
actually responds elastically as long as the
stress is below a threshold value. Sand grains
also deform slightly. Hence, for real systems,
a continuum elastic description will always
be useful. However, the new concept of
fragile matter brings a valuable perspective
from the opposite limit of completely non-
deformable particles.

We would like to point out that the class of
jammed materials may actually be broader
than the authors suggest. They consider
jamming only in systems with no attractive
interactions (where the particle dynamics
are constrained through an applied stress)
and where the individual particles are large

news and views

NATURE | VOL 396 | 5 NOVEMBER 1998 | www.nature.com 21

Nonlinear dynamics

Jamming is not just cool any more
Andrea J. Liu and Sidney R. Nagel

so that there is no thermal motion. These two
constraints may not be essential. 

We know from studies of liquids and
glasses that a system with attractive interac-
tions often behaves in the same way as anoth-
er that has only repulsive forces but is con-
fined in a container (that constrains its den-
sity). In the case of jamming, the opposite
situation may be possible: that is, one might
be able to replace the constraints of an exter-
nal pressure or stress with an attractive inter-
action between the particles. Thus, a super-
cooled liquid can be jammed into a glass sim-
ply by lowering the temperature, not by
applying a stress. When a liquid is cooled
below its freezing point, its viscosity increas-
es rapidly. Eventually, it falls out of equilibri-
um into a disordered solid, or glass, where it
only explores a small part of phase space, just
as in the case of a jammed granular material
or foam.

So might the concept of jamming and
fragility include microscopic systems with
attractive interactions, which unjam as one
raises the temperature, as well as stressed
macroscopic systems with repulsive interac-
tions, which unjam as one applies an incom-
patible stress? We have sketched a speculative
phase diagram for jamming (Fig. 1) that ties
the different systems together. This phase
diagram depends on temperature, load and
density. 

According to this picture, jamming can
occur only when the density is high enough.
One can then unjam the system either by
raising temperature or by applying a stress.
The phase diagram raises some interesting
questions: for example, a glass may have a
lower glass transition temperature under
high shear stress. Likewise, a jammed granu-
lar material or foam may have a lower yield
stress when random motions (that is, ther-
mal fluctuations) are present. This would
explain the beneficial role of banging on
jammed conduits on the factory floor.

Whether jammed systems indeed share
features that can be described by a phase dia-
gram is an open question, but if our specula-
tion has any merit it would bring together
several different types of behaviour under
one rubric. Are the dynamics of different
systems approaching the jammed state also
similar? If temperature and applied stress
play similar roles in unjamming systems, is it
possible that driven, macroscopic, athermal
systems like granular materials and foams
might be described in terms of an effective
temperature? Is statistical mechanics useful
at all in describing these systems? These  and
related questions will take years to resolve,
but the picture of Cates et al. helps to point
out some of the interesting conceptual
problems that need to be addressed.
Andrea J. Liu is in the Department of Chemistry
and Biochemistry, University of California at Los
Angeles, Los Angeles, California 90095-1569, USA.
e-mail: liu@chem.ucla.edu

All around us, things seem to be getting
jammed. We travel on a highway and
we are caught in traffic jams. At the

wholefoods counter, grains and beans jam as
they refuse to flow out of the bottom of the
hopper into our bags. In factories,  powdered
raw materials clog the conduits that were
designed to carry them smoothly. Our
recourse in all these situations is to pound on
our conduits, hoppers and dashboards until
the jam miraculously disappears. We are
usually so irritated that we have not really
noticed that the jammed state, in all of these
situations, has common properties. For
example, the vibrations from the pounding
actually do some good in reinitiating flow —
except in the case of the traffic jam. Does the
jammed solid then have different properties
from the solids we normally encounter in the
laboratory?

Writing in Physical Review Letters, Cates,
Wittmer, Bouchaud and Claudin1 contend
that these jammed systems really belong to a
new class of materials: ‘fragile matter’. These
systems resemble solids because the particles
are driven into a jammed state by an exter-
nally applied stress. When jammed, the dis-
ordered system is caught in a small region of
phase space with no possibility of escape. 

Cates et al. propose that jammed systems
are fundamentally different from ordinary
solids in that, if the direction of the applied
stress changes even by a small amount, then
the jam will break up. A canonical example is
a pile of sand, which appears solid: the upper
surface slopes and sustains its shape despite
the force of gravity, which one would expect
to level the pile. But if one tilts or vibrates the
pile, the grains shift and the solid melts. The
authors argue that the unusual mechanical
properties of fragile matter require a new
theoretical description, which they first
applied to a heap created by pouring sand
onto the apex of a pile2,3. 

Traditionally, the forces within such a
pile have been described using continuum
elastoplastic theories. These are similar to
models that describe ordinary solids4: every
increment of stress in the material is related
to a corresponding deformation, or strain5.
The approach of Cates et al. is to start from a
pile of completely non-deformable parti-
cles, for which strain is not an obviously use-
ful variable. Their simple model of a chain of
hard particles insists that the jammed system
cannot be considered as an elastic body.
Although it can support a large applied load
in the same direction as the original jam-
ming forces, the chain will fall apart if even
an infinitesimal force is applied in a different
direction. For an extended material such as a

Figure 1 A possible phase diagram for jamming.
The jammed region, near the origin, is enclosed
by the depicted surface. The line in the
temperature–load plane is speculative, and
indicates how the yield stress might vary for
jammed systems in which there is thermal
motion.
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1/Density
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A. Liu and S. Nagel, 
Nature 396, 1998



Isotropic	de-compression;	effect	of	friction



Polydispersity and	
what’s	the	difference	between

ISO,	UNI	and	SHEAR?

 0.635

 0.645

 0.655

 0.665

 0.675

 0.685

 1  10

ν c

w

ISO
UNI

DEV
Eq. (15) in Ogarko & Luding (2012)

Figure 7: Evolution of jamming point νc with polydispersity w for the deformation modes considered.
Corresponding solid lines are the theoretical predictions for different modes using Eq. (11). Note that the
fit is applied only to w > 1.2, since local crystallization (Ogarko & Luding, 2012; Schröder-Turk et al.,
2010) might happen at lower polydispersity causing νc values much higher than the disordered, random
prediction.

(11) to the three deformation modes, and in Fig. 7 we show the prediction for hard spheres together
with the νc simulation data for the three modes, and the fitting curves, where the parameters ν0c and
ν∞c are presented in Table 2. Besides the quantitative disagreement due to the difference between hard
and soft spheres, both systems show a very similar trend, the predictions working well for all the three
modes. The simulations in Ogarko & Luding (2012), leading to Eq. (11), were carried out by very slow
isotropic compression from the low density collisional regime, where the fluctuation velocities were not
relaxed as done in this study. The strong kinetic energy fluctuations represent a type of ‘tapping’ that
allows the system to relax to better packed configurations with larger νc. The data in Fig. 7 from Ogarko
& Luding (2012) thus represents an upper limit of optimal compaction, which is not reached by e.g.
slow over-compression to νmax = 0.82. Eq. (11) can then capture the evolution of νc with polydispersity,
irrespective of the deformation modes, when the fit parameters are properly defined. This interesting
feature shows that νc acts as a state variable, able to describe the configuration of the assembly and thus
represent its history, as also reflected by the overlaps in Fig. 4.

4.2.2 Coordination Number

It has been shown in Göncü et al. (2010); Imole et al. (2013) that under isotropic deformation, the
corrected coordination number, C∗ follows the power law:

C∗(ν) = C0 + C1

(
ν

νc
− 1

)α

, (12)

where C0 = 6 is the isostatic value in the frictionless case. α and C1 are fit parameters, while we use
νc from p∗ extrapolation analysis as input value, leading to one less fit parameter for C∗. We observe a
very small variation (3 %) of α with polydispersity and deformation modes (Imole et al., 2013) but for
simplicity we set it to a fixed value of 0.60 in this work (Peyneau & Roux, 2008). Only C1 is then the
residual free fit parameter.

In Figs. 5(d – f), we compare the evolution of the corrected coordination number C∗ as a function
of volume fraction ν during isotropic, uniaxial and after deviatoric loading and show its dependence on
polydispersity. The behavior is qualitatively similar for all the three deformation paths: contacts close
and the coordination number increases with increasing volume fraction. Moreover, for the three modes,

11

hard

soft



• Granular materials are the combination of discrete solid (macroscopic) particles

• many interesting phenomena - can we understand them? all together?

history-dependence, slow relaxation, creep/aging, shear-localization, “avalanches”, …

fluid-solid transition => jamming “point” – no point, but a variable! J-line!

Jamming ó unjamming (rheology)
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sandpile, the material is fragile in the sense
that a slight change in direction of the
applied stress will change the entire structure
of the force chains that give the pile its rigidi-
ty. Because there is no obvious relation con-
necting stress to strain throughout the pile,
Cates et al. bypass the strain altogether and
propose a relation between different compo-
nents of the stress tensor2,3. This continues to
be a hotly debated assumption4,6–8.

Cates et al. suggest that one way to re-
concile the two approaches is to allow the
particles to deform, so that the material
can respond elastically to sufficiently small
loads. One example of a system that is
jammed and yet not fragile is foam. Shaving
foam, for example, is jammed because the
bubbles are tightly packed together under an
isotropic stress, namely atmospheric pres-
sure. If it were fragile, it would respond plas-
tically to a shear stress, no matter how small.
However, because bubbles deform, foam
actually responds elastically as long as the
stress is below a threshold value. Sand grains
also deform slightly. Hence, for real systems,
a continuum elastic description will always
be useful. However, the new concept of
fragile matter brings a valuable perspective
from the opposite limit of completely non-
deformable particles.

We would like to point out that the class of
jammed materials may actually be broader
than the authors suggest. They consider
jamming only in systems with no attractive
interactions (where the particle dynamics
are constrained through an applied stress)
and where the individual particles are large
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Jamming is not just cool any more
Andrea J. Liu and Sidney R. Nagel

so that there is no thermal motion. These two
constraints may not be essential. 

We know from studies of liquids and
glasses that a system with attractive interac-
tions often behaves in the same way as anoth-
er that has only repulsive forces but is con-
fined in a container (that constrains its den-
sity). In the case of jamming, the opposite
situation may be possible: that is, one might
be able to replace the constraints of an exter-
nal pressure or stress with an attractive inter-
action between the particles. Thus, a super-
cooled liquid can be jammed into a glass sim-
ply by lowering the temperature, not by
applying a stress. When a liquid is cooled
below its freezing point, its viscosity increas-
es rapidly. Eventually, it falls out of equilibri-
um into a disordered solid, or glass, where it
only explores a small part of phase space, just
as in the case of a jammed granular material
or foam.

So might the concept of jamming and
fragility include microscopic systems with
attractive interactions, which unjam as one
raises the temperature, as well as stressed
macroscopic systems with repulsive interac-
tions, which unjam as one applies an incom-
patible stress? We have sketched a speculative
phase diagram for jamming (Fig. 1) that ties
the different systems together. This phase
diagram depends on temperature, load and
density. 

According to this picture, jamming can
occur only when the density is high enough.
One can then unjam the system either by
raising temperature or by applying a stress.
The phase diagram raises some interesting
questions: for example, a glass may have a
lower glass transition temperature under
high shear stress. Likewise, a jammed granu-
lar material or foam may have a lower yield
stress when random motions (that is, ther-
mal fluctuations) are present. This would
explain the beneficial role of banging on
jammed conduits on the factory floor.

Whether jammed systems indeed share
features that can be described by a phase dia-
gram is an open question, but if our specula-
tion has any merit it would bring together
several different types of behaviour under
one rubric. Are the dynamics of different
systems approaching the jammed state also
similar? If temperature and applied stress
play similar roles in unjamming systems, is it
possible that driven, macroscopic, athermal
systems like granular materials and foams
might be described in terms of an effective
temperature? Is statistical mechanics useful
at all in describing these systems? These  and
related questions will take years to resolve,
but the picture of Cates et al. helps to point
out some of the interesting conceptual
problems that need to be addressed.
Andrea J. Liu is in the Department of Chemistry
and Biochemistry, University of California at Los
Angeles, Los Angeles, California 90095-1569, USA.
e-mail: liu@chem.ucla.edu

All around us, things seem to be getting
jammed. We travel on a highway and
we are caught in traffic jams. At the

wholefoods counter, grains and beans jam as
they refuse to flow out of the bottom of the
hopper into our bags. In factories,  powdered
raw materials clog the conduits that were
designed to carry them smoothly. Our
recourse in all these situations is to pound on
our conduits, hoppers and dashboards until
the jam miraculously disappears. We are
usually so irritated that we have not really
noticed that the jammed state, in all of these
situations, has common properties. For
example, the vibrations from the pounding
actually do some good in reinitiating flow —
except in the case of the traffic jam. Does the
jammed solid then have different properties
from the solids we normally encounter in the
laboratory?

Writing in Physical Review Letters, Cates,
Wittmer, Bouchaud and Claudin1 contend
that these jammed systems really belong to a
new class of materials: ‘fragile matter’. These
systems resemble solids because the particles
are driven into a jammed state by an exter-
nally applied stress. When jammed, the dis-
ordered system is caught in a small region of
phase space with no possibility of escape. 

Cates et al. propose that jammed systems
are fundamentally different from ordinary
solids in that, if the direction of the applied
stress changes even by a small amount, then
the jam will break up. A canonical example is
a pile of sand, which appears solid: the upper
surface slopes and sustains its shape despite
the force of gravity, which one would expect
to level the pile. But if one tilts or vibrates the
pile, the grains shift and the solid melts. The
authors argue that the unusual mechanical
properties of fragile matter require a new
theoretical description, which they first
applied to a heap created by pouring sand
onto the apex of a pile2,3. 

Traditionally, the forces within such a
pile have been described using continuum
elastoplastic theories. These are similar to
models that describe ordinary solids4: every
increment of stress in the material is related
to a corresponding deformation, or strain5.
The approach of Cates et al. is to start from a
pile of completely non-deformable parti-
cles, for which strain is not an obviously use-
ful variable. Their simple model of a chain of
hard particles insists that the jammed system
cannot be considered as an elastic body.
Although it can support a large applied load
in the same direction as the original jam-
ming forces, the chain will fall apart if even
an infinitesimal force is applied in a different
direction. For an extended material such as a

Figure 1 A possible phase diagram for jamming.
The jammed region, near the origin, is enclosed
by the depicted surface. The line in the
temperature–load plane is speculative, and
indicates how the yield stress might vary for
jammed systems in which there is thermal
motion.
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unjammed states, friction is necessary for 
establishing, through finite shear strain, 
mechanically stable solid-like states with 
structural anisotropy. Only if friction is 
strong enough, and if the procedure is 
sufficiently dissipative and slow, solid, 
shear-jammed states8 can be established in 
the full range3. Although it was evident in 
‘solid-like’ states (solid with fluid features) 
above jamming that the jamming density 
changes when the system restructures (and 
thus the coordination number and moduli, 
such as B, change5,10), the new results 
support the idea of an evolving ϕJ also 
below jamming.

Two questions remain: what are the 
mechanisms for restructuring in the 
absence of a mechanical-contact or force 
network, and what is the evolution equation 
for ϕJ?

Over-compression to larger 
pressure5 or tapping/tempering, as often 
applied in experiments8, are (mostly) 
isotropic modes of perturbation 
that can cause irreversible (plastic) 
restructuring events, possibly — but 

not necessarily — with ongoing (local) 
ordering or crystallization4,9. Such events 
will, on average, lead to denser, more 
efficient packings that must have a higher 
(jamming) density after the event. Thus, 
such deformations are responsible for 
slow changes (evolution) of the jamming 
density4,5,9, whereas the actual numerical 
values of ϕJ (and the range available, which 
is narrow for frictionless materials and very 
wide in the presence of friction) depend 
on the particle-size distribution6,11,12, the 
particles’ shapes and the contact properties 
(not only friction3, but also roughness, 
cohesion and so on). Both creep at fixed 
pressure and stress relaxation at fixed 
volume, particular manifestations of 
soft- and granular-matter behaviour 
as mentioned above, are then just the 
consequence of a slowly increasing ϕJ that 
results in a decreasing volume (1/ϕ) and 
pressure (p), respectively.

In contrast to mechanisms that lead 
to densification, that is, an increase in 
packing efficiency, there are fundamentally 
distinct modes of deformation. Shear 

modes result in plastic events (mostly) 
reducing the packing efficiency; this 
happens fast, with a probability increasing 
with the strain amplitude. Dilatancy, 
mentioned above, is then the consequence 
of a decrease in ϕJ for general shear 
deformations, but also in the special cases 
of either constant pressure or constant 
volume shear. By the same token, systems 
that are sheared, starting from an initially 
unjammed state, jam at a finite shear 
strain3,5,8,9, just because εJ transits from 
a negative to a positive value due to a 
decreasing jamming density. Adding 
different deformation rates (not discussed 
here) and the consequent variation in ϕJ 
(ref. 4) will complete the picture. 

The work by Vinutha and Sastry3 thus 
adds important insights, complementing 
other recent research: fundamentally 
different roles are played by tapping (Tg), 
isotropic (compression) and deviatoric 
(shear) deformations — both above and 
below jamming.

In the opinion of this author, the 
evolution of the microstructure due to 
previously applied deformations is the 
most essential ingredient for a meaningful 
model for granular (and soft) matter. The 
microstructure contains the information 
on how different deformation paths 
have affected the present mechanical 
state (structure) of the system. In other 
words, the structure — both isotropic 
(ϕJ) and anisotropic (not discussed here, 
see refs 5,10) — memorizes the history 
of the packing. The many peculiar effects 
like hysteresis, ratcheting, dilatancy, 
creep, relaxation and so on are then a 
consequence of the evolution of ϕJ — but not 
new mechanisms. ❐

Stefan Luding is at the Faculty of Engineering 
Technology, MESA+, University of Twente, 
PO Box 217, 7500 AE Enschede, The Netherlands. 
e-mail: s.luding@utwente.nl
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ϕJ(t)ϕc
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≈
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Figure 1 | Schematic of granular- and soft-matter density regimes, below and above the jamming 
density, for three different types of materials. Material state versus density (ϕ) for zero friction 
(μ = 0; top), moderate friction (μ > 0; middle) and large friction (μ → �; bottom), where μ is the 
coefficient of friction, blue indicates a fluid state, red arrows indicate unjammed states with solid 
features, and green indicates a solid state. Cases with different friction have now been investigated by 
means of simulations of sheared hard-sphere systems3. Considering one realization of a finite system, 
but for a different material or friction, the lowermost densities (ϕ < ϕKT) occur for random, collisional 
fluids that are well described by kinetic theory11,13. The density ϕKT above which this model fails is close 
to random loose packing, where ϕRLP � 0.54. The intermediate regime (ϕRLP < ϕ < ϕJ) features fluids 
with solid features3,4,6,11 below the variable, history-dependent jamming density ϕJ. At higher densities 
(ϕ > ϕJ), the states are jammed, ‘solid-like’ states5 that are not strictly solid, but have a finite probability 
to flow, creep, relax, slip, yield or restructure with plastic deformations — the jamming point ϕJ(t) varies 
with time t — and could thus be referred to as solids with fluid features. (Note that the random close 
packing density ϕRCP � 0.64 happens to be close to the special jamming density, ϕJ

0, but that it is by 
no means the upper limit for ϕJ as both disordered and ordered structures, at and above ϕordered, can 
be present well above the fluid regime5,12,13.) The density ϕc

μ, located in the fluid region, represents the 
well-defined, material-dependent steady-state or critical-state density1 that is reached after applying 
large shear strain at vanishing pressure, with the limit values ϕc

0 < ϕJ
0 and ϕc

� � ϕRLP for zero and very 
large friction, respectively.



Constitutive	Model: With	Anisotropy

Due to A1 and A2, the model provides a cross coupling 
between the two types of stress and strain in the model

Isotropy (before) + Anisotropy Fdev

Need to define - Initial state and the deformation path
… then integrate the incremental evolution …



Constitutive	model	– calibration
Direct	moduli	(B,G,A)	probing	…

Bulk	Modulus:	 B	=	b0 FV

Shear	Modulus: G	=	B	g(FV)	[1-σ*dev Fdev]

Anisotropy	Modulus: A	=	B	Fdev



Prediction	(improved	2014)	– Cyclic	Shear

N. Kumar, S. Luding, V. Magnanimo, Acta Mechanica, 2014



cyclic (isotropic) deformation

- Intermediate cyclic over-compression (amplitude 0.73) 
- red: 1st cycle … blue: 100th cycle …

loading

unloading

points: particle simulation ó lines: continuum model (RVE)



Predictive power – cyclic pure shear MACRO

- Cyclic shear for 3 cycles (after the first loading, system forgets history).

- Quantities like – fraction of non-rattlers, coordination number, pressure –
by mainly modifying the constitutive model with non-constant jamming point.



Summary:
there are isotropic & deviatoric modes of deformation!

- dilatancy in frictionless&frictional packings 
- elasticity (reversible) plasticity (irreversible)
- shear-jamming or thickening(?) in frictionless packs
- new isotropic-state-variable! (for macro-view)
=> the jamming density ΦJ(H )

… or another related quantity

- fluctuations are missing => meso-scale
- energy-landscape model explains it all J



+ successful tool – few parameters

- microscopic foundations ?

- extensions & parameter identification

Continuum Theory

deformation  - rotations
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Next: Implementation in FEM model



Predictive power – large strain shear MACRO

=> Failure/yield loci/surfaces … work in progress …
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Figure 3: Evolution of the elastic stress response envelope with deviatoric strain applied to the sample, starting from nearly isotropic
configuration to highly anisotropic state. Configurations (a)-(e) correspond to deviatoric strain −εdev = 0.006,0.021,0.043,0.068,0.32
respectively. The applied strain increment is small, δε < 10−4 and the response elastic. Points corresponds to the special directions, as
shown in Fig. 2.
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Figure 4: Evolution of the elastic fabric response envelope from the same configurations as in Fig. 3.
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Figure 5: Evolution of the elasto-plastic stress response envelope from the same configurations as in Fig. 3, with higher strain increment
δε > 10−3 and response plastic.
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Figure 6: Evolution of the elasto-plastic fabric response envelope from the same configurations as in Fig. 5.

being a measure of the bulk modulus of the material.
On the other hand, a purely deviatoric perturbation has
its image on the minor axis of the stress envelope, that
provides then a representation of the shear modulus.
This also explains the very narrow shape of the our el-
lipses: as our numerical probe experiments are carried
out with zero contact friction, we detect very small (but
non-zero) shear moduli.

When looking to figure 3(e), the images of both
isotropic and deviatoric strain increments do not lie
anymore on the axes of the ellipse, but they are rather
in an off-axes location. This is due to the anisotropy
in the system. In fact, when a volumetric strain is
applied to an anisotropic configuration, along with
the volumetric stress response (bulk modulus) also
a shear stress response develops. The corresponding
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Figure 3: Evolution of the elastic stress response envelope with deviatoric strain applied to the sample, starting from nearly isotropic
configuration to highly anisotropic state. Configurations (a)-(e) correspond to deviatoric strain −εdev = 0.006,0.021,0.043,0.068,0.32
respectively. The applied strain increment is small, δε < 10−4 and the response elastic. Points corresponds to the special directions, as
shown in Fig. 2.
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being a measure of the bulk modulus of the material.
On the other hand, a purely deviatoric perturbation has
its image on the minor axis of the stress envelope, that
provides then a representation of the shear modulus.
This also explains the very narrow shape of the our el-
lipses: as our numerical probe experiments are carried
out with zero contact friction, we detect very small (but
non-zero) shear moduli.

When looking to figure 3(e), the images of both
isotropic and deviatoric strain increments do not lie
anymore on the axes of the ellipse, but they are rather
in an off-axes location. This is due to the anisotropy
in the system. In fact, when a volumetric strain is
applied to an anisotropic configuration, along with
the volumetric stress response (bulk modulus) also
a shear stress response develops. The corresponding



Rheology: So much for the jamming point …

Response: jamming “point” moves!
- slow for ISO => increase => consolidation
- fast for DEV => decrease ó dilatancy

Micro-structure: Packing “efficiency” & anisotropy

Fluid with solid features vs. flowing solid
There is not just one phase-diagram L

All mechanisms without friction (colloids/glass)
1 – friction/material changes regime/values
2 - re-entrance = shear-jamming/-thickening



Fluid with solid features ó microstructure

channel/throat distribution
(4 particle correlation)

2D order in 3D !

V. Ogarko, N. Rivas, SL, JCP 2014 

2

a neighbor-triangle by which the central particle could move.
This is computed by considering the Apollonius circle, i.e, the
circle which is simultaneously tangent to all other three circles
defined by the projection of the three spheres in the neighbor-
triangle plane. There are at most eight possible Apollonius
circles for each case, which are obtained analytically by solv-
ing a system of three quadratic equations33. From the set of
eight possible solutions we choose the one which correspond
to the circle that does not contain any particle center of the
neighbor-triangle, as it is the only one that corresponds to our
definition of channel34. The radius of the respective channel is
then defined as the radius of this circle, R j, as shown in Fig. 1.

Having obtained R j for all neighbor-triangles of every par-
ticle, we then compute the normalized probability distribution
function of (scaled) channel sizes, f (R j/r). The ratio R j/r
is calculated for all neighbor triples j with channel size R j of
every particle. Note that R j/r has a direct physical interpreta-
tion, as less than unity corresponds to a closed channel, while
greater than unity corresponds to an open channel, through
which eventually the central particle could escape. Further-
more, the function f is well defined for spheres with any size
distribution, since the radius of the central particle is scaled
out. We analyze both the individual structure of f as also its
evolution with volume fraction, for various particle systems.

j

j

FIG. 1. (left) The central particle (white) is shown together with its
nearest neighbours, defined by Delaunay-edges. The channels for
neighbour-triangles DBA (middle) and ABC (right) are shown in the
neighbor-triangle plane. The particles A, B and C are lying almost on
the same plane with the central particle and are practically touching
it, so the channel almost coincides with the central particle. This is
not the case for the BDA triangle.

In order to refine our definition of channels, we consider
f (R j/r) for very low volume fractions, where no structure
is expected (see Fig. 2). When considering all triangles the
distribution presents a recognizable wide tail structure, but
after excluding from the distribution the channels sizes that
correspond to non-acute neighbor-triangles, i.e., those where
one of the angles is greater than 90 degrees, the distribu-
tion becomes Gaussian, with high accuracy over three orders
of magnitude35. The exclusion of non-acute triangles makes
physical sense considering that channels defined by them can-
not block the central particle, thus conflicting with our initial
definition of a channel. For the rest of the analysis, non-acute
triangles are never considered.
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FIG. 2. Normalized distribution of the channel sizes scaled with
the particle radius in the gas regime (ν ≈ 0.0014) using full
statistics (red pluses) and with non-acute neighbor-triangles ex-
cluded (blue crosses). The solid line is a Gaussian fit g(x) =
(σ

√
2π)−1 exp

[

−(x−µ)2/(2σ2)
]

with parameters σ ≈ 4 and µ ≈
15.9. The bin-size is 0.1.

III. SIMULATION DETAILS

We use an event-driven molecular dynamics algorithm, as it
is fundamentally suited for the simulation of hard spheres sys-
tems. The number of particles is by default N = 163 = 4096,
unless stated otherwise. Given the large amount of possible
neighbor-triangles for each particle, the statistical significance
rapidly increases with the number of particles in the system.
We observed that 4096 particles was adequate, as increasing
the number of particles did not produce any noticeable change
in any of the results. Periodic boundary conditions are im-
posed to mimick an infinite system, i.e., a statistically homo-
geneous medium.

Starting from zero volume fraction, we compress the sys-
tem towards a jammed state using a modification of the
Lubachevsky-Stillinger algorithm36,37, which allows the ra-
dius of the particles to grow linearly in time with a dimen-
sionless rate Γ38. The kinetic energy, E , is kept constant using
a re-scaling thermostat procedure39,40.

If the growing is sufficiently slow, Γ < 0.000741, the
monodisperse system stays in a gas-fluid state in approxi-
mate equilibrium during the densification phase, and exhibits
a fluid-solid transition (crystallization) for volume fractions
between νf ≈ 0.492 (freezing point) and νm ≈ 0.543 (crys-
tal melting point). For infinitely slow compressions, it is
expected that the system finally reaches a stable solid (crys-
talline) phase with close-packing fraction νcp ≈ 0.7405, cor-
responding to face-centered close packing. In our simulations,
due to finite compression rates, we reach a crystalline phase
with defects and different local arrangements, and packing
fractions up to ν ≈ 0.73. This corresponds to a thermodynam-
ically stable branch in the hard sphere phase diagram10. On
the other hand, for fast compression rates the system enters a
metastable state for ν > νm, which extrapolates continuously
from the fluid branch and is conjectured to end at some ran-
dom close packing state, around νrcp ≈ 0.64, the interpretation
of which is beyond the scope of this study, as its value depends

3

on the details of the procedure42.

IV. RESULTS AND DISCUSSION

We now observe the evolution of f (R j/r) with ν for fast
and slow compression rates.
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FIG. 3. Normalized distribution of the channel sizes scaled with the
particle radius for slow compression (Γ = 16 × 10−6) and various
volume fractions given in the inset. The bin-size is 0.01.

A. Crystallization path

As the volume fraction increases, the distribution of chan-
nel radii fundamentally changes, see Fig. 3 (a). The distri-
bution changes to non-Gaussian for fluid densities above ν ≈
0.15− 0.25. We speculate that this change corresponds to the
percolation gas-to-fluid transition observed by Woodcock43 at
similar packing fractions, although we did not investigate this
in detail. As the volume fraction increases, two smooth humps
continuously grow, that at higher ν > 0.5 evolve into two well
defined peaks, centered above R j/r ≈ 0.15 and near R j/r = 1.
These values can be understood in terms of the geometry of
the local arrangements: R j/r ≈ 0.15 ideally corresponds to
the size expected for three touching equal spheres, and thus
the appearance and growth of this peak shows the appearance
of triples in contact as well as the relative importance of den-
sity fluctuations. It is also the absolutely smallest possible
channel size for equally sized spheres. The peak at unity, on

the other hand, is obtained for three particles lying on the same
plane with the central particle and practically touching it, i.e.,
when the channel essentially coincides with the central parti-
cle; we confirmed that the majority of particles corresponding
to the peak at unity are indeed practically touching the central
particle.

As expected for very slow compression, Γ = 16×10−6, the
system exhibits (partial) crystallization near the melting point
νm ≈ 0.54; crystallization at the freezing point is kinetically
suppressed44. The distribution is able to capture the crystal-
lization transition by the development of two new peaks, at
R j/r ≈ 0.4 and R j/r ≈ 1.4. This transition is shown with more
detail in the inset of Fig. 3 (a). The new peak at R j/r ≈ 0.4
corresponds to a square crystalline arrangement. On the other
hand, the peak at R j/r ≈ 1.4 groups several distinct arrange-
ments which can be distinguished as ν further increases, as
shown below. This was confirmed for many runs with differ-
ent initial particle velocities and positions.

Finally, as the maximum volume fraction is reached (i.e, as
the pressure diverges), the distribution is mostly dominated by
steep peaks, see Fig. 3 (b). In analogy with Bragg peaks from
common diffraction techniques, these peaks can be traced to
the crystal structures present in the particles’ arrangement.
Figure 4 shows f (R j/r) for perfect FCC, HCP, BCC and SC

crystals of about 103 particles, as a reference. They all present
significant differences, which allows to easily distinguish be-
tween them. A detailed discussion of these peaks is beyond
the scope of this study.
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FIG. 4. Normalized distribution of the channel sizes scaled with the
particle radius for perfect FCC, BCC, HCP and SC crystals with
1099, 1024, 1254 and 1000 particles, respectively. The bin-size is
0.002.

B. Glassification path

Let us now focus on the case of fast compression, Γ =
16× 10−3, for which crystallization is never reached. The
channel size distributions for different volume fractions are
shown in Figure 5. For volume fractions below ν ≈ 0.2,
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Equations of motion
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How to model Contacts?

Atomistic/Molecular  …
Continuum theory + Contact Mechanics
Experiments (Nano-Ind., AFM, Mech., HSMovies)
Contact Modeling
• Full/All Details … too much! 
• Mesoscopic type Models
• (Over-)Simplified Models
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- (really too) simple J
- linear
- very easy to implement

Linear Contact model



- really simple J
- linear, analytical

- very easy to implement

Linear Contact model
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Time-scales

contact duration ct p
w= argl e small

c ct t>

time-step 50
cttD <=

different sized particles
n ct t<

n ct t>

sound propagation  ... with number of layers L c LN t N

experiment T

time between contacts

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf
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- simple J
- non-linear
- easy to implement

Hertz Contact model



3D

Anisotropy 3D



This image cannot currently be displayed.

Sound
3-dimensional modeling of sound propagation 

P-wave shape and speed 



Contact force measurement (AFM)



Contact force measurement (AFM)
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Contact force measurement (AFM)
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Contact Force Measurement



0 50 100 150 200 250
-5

0

5

10

15

20
Polystryrene

D
ef

or
m

at
io

n 
H

ys
te

re
si

s 
in

 n
m

Force in nN
0 1000 2000 3000

-5

0

5

10

15

20
Borosilicate glass

D
ef

or
m

at
io

n 
H

ys
te

re
si

s 
in

 n
m

Force in nN

Hysteresis (plastic deformation)

Collaborations:
MPI-Polymer Science (Butt et al.)
Contact properties via AFM



Adhesion and Friction
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Nano-indenter -> contacts at microscale

torsion
+rolling

R. Fuchs, T. Weinhart, et al. Granular Matter, 2014
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Nano-indenter -> contacts at microscale



torsion
+rolling

R. Fuchs, T. Weinhart, et al. Granular Matter, 2014
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Elastic spheres

Before During   
After

Elasto-plastic spheres



Contacts
1. loading

2. unloading
3. re-loading

4. tensile failure

2

transition to 
stiffness: k

max. tensile 
force

2

elastic un/re-loading 
stiffness: k



f

Reversible elasto-plastic adhesive contacts

Van-der Waals type interaction.

• Long range force.
• Loading

Plastic def.
• Unloading
“elasto-plastic”

• Re-loading
“elastic”

• Cohesion 



f

Irreversible elasto-plastic adhesive contacts
• Loading

Plastic def.
• Unloading
“elasto-plastic”

• Re-loading
“elastic”

• Cohesion 
• Long-range 

forces …                                       



Coefficient of restitution



Low velocity: 
STICKING
behavior 
similar

High velocity:
STICKING 
behavior different

Intermediate velocity:
BOUNCE / transient



Dependence on Adhesive Stiffness



Sliding contact points:
- static Coulomb friction 
- dynamic Coulomb friction
- objectivity
Sliding/Rolling/Torsion

Tangential contact model
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- Static friction 
- Dynamic friction

project into tangential plane
compute test force

sticking:
sliding:

Tangential contact model
- spring
- dashpot
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3D – Density vs. friction …

• Saturation at strong friction

ν=0.48



3D – Density vs. rolling-resistance

• Saturation at high rolling resistance

ν=0.45



… details of interaction

Attraction + Dissipation = Agglomeration



S. Gonzalez-Briones, MSM, 2010

Example: Agglomeration



• Particle Agglomeration/Clustering

1) Without longrange forces

2) With longrange forces

Challenge

GAS

FLUID

SOLID



We can simulate:

+ element tests (REV)
+ small processes & equipment

– large scales (processes/plants/geophysical scales)
– especially of fine, cohesive powders

Instead:
+ provide constitutive relations = f(contact)
+ model large scales with continuum methods



tension - uni-axial 

2 1 2tk k =



uni-axial compression-tension

• Compression
• Tension



compression - uni-axial 

2 1 2tk k =



compression - uni-axial 

2 1 2tk k =



compression - uni-axial 

2 1 2tk k =



compression - uni-axial 

2 1 2tk k =



1. Preparation
2. HIGH pressure
3. Relaxation
4. Compression
5. Tension
6. Healing

healing (compression)

Olaf Herbst, PostDoc, 2009
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Continuum Theory

Overview

Introduction
Meso-contact models
MESO particle simulation
Global/Local micro-macro
Continuum Theory
… with microstructure



Meso
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Figure 16: Dimensionless force-displacement curve for an unconfined uni-axial ten-
sion test (negative horizontal axis), with the various different deformation amplitudes
Dx given in the inset. The downward arrow indicates the direction of first tensile un-
loading, while the upwards-right arrows indicate the change of force during re-loading.
Except for the red curve, all these branches are reversible, for repeated un-/re-loading.
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Figure 17: Snapshots of the tablet-sample during (large) tensile deformations for Dx =
(L−L0)/d0 = 0 (a), 0.81 (b), 1.8 (c), 3.1 (d), 4.7 (e), 7.4 (f), and 8.6 (g). The primary
particles are colored according to their distance from the viewer (red, green, blue is
increasing distance).
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Figure 17: Snapshots of the tablet-sample during (large) tensile deformations for Dx =
(L−L0)/d0 = 0 (a), 0.81 (b), 1.8 (c), 3.1 (d), 4.7 (e), 7.4 (f), and 8.6 (g). The primary
particles are colored according to their distance from the viewer (red, green, blue is
increasing distance).
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Meso = superposition of many primary p.



Meso contacts …
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(L−L0)/d0 = 0 (a), 0.81 (b), 1.8 (c), 3.1 (d), 4.7 (e), 7.4 (f), and 8.6 (g). The primary
particles are colored according to their distance from the viewer (red, green, blue is
increasing distance).
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Meso = superposition of many primary p.

fn = fhys

δ

kp

−kc

k′p
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Figure 10: Force-displacement law for elasto-plastic, adhesive contacts superimposed
on the irreversible contact force law. The black solid line represents the force law for
reference input parameters φ f and kp, while the dashed red line represents the same for

a new chosen φ f
′

and newly calculated kp
′

resembling a wider plastic regime of the
particle deformation.
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Meso contacts …
+ coarse = up-scaled particles

represent many primary particles

one way of multi-scale modeling

attention: does not always work!

Meso = superposition of many primary p.



1. Preparation
2. Heating
3. Sintering / 

Cementation
4. Cooling
5. Relaxation
6. Testing

Sintering / Cementation (back to 2D)

T(t)



Sintering /Cementation 2

( )1 1loading stiffness: k k T=

maxmaximum overlap ed: fix d +

0neutral overlap increasin : g d +

2. Heating



Sintering /Cem.
2. Heating

( )1 1loading stiffness: k k T=

maxmaximum overlap ed: fix d +

0neutral overlap increasin : g d +



Sintering / Cem. 3
3. Sintering / Cementation - Reaction



Sintering 3
3. Sintering
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- slow dynamics (t0)
- diffusion, …
- trick: increase t0



Sintering 4
4. Cooling



Sintering 4
4. Cooling
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Sintering 5
5. Relaxation



Contact forces
after Sintering after Relaxation



Sintering 6
6. Testing

p=const.

strain …



Sintering 6
6. Testing

p=const.

strain …



Sintering 6
6. Testing

p=const.

strain …



Sintering 6
6. Testing

p=const.

strain …



Sintering 6
6. Testing

p=const.

strain …

cracks



Sintering 6
Contact number

N=100 N=300



Sintering 6
Density – Shrinkage!



Sintering 6
Stiffness …

p=100 p=10

sintering time



Sintering
Vibration test 

p=100 p=10



Sintering (Temperature+Pressure)
Vibration test 

p=100 p=10


